Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 3, 2026
-
Free, publicly-accessible full text available January 3, 2026
-
Free, publicly-accessible full text available December 31, 2025
-
Optimal Joint Defense and Monitoring for Networks Security under Uncertainty: A POMDP‐Based ApproachThe increasing interconnectivity in our infrastructure poses a significant security challenge, with external threats having the potential to penetrate and propagate throughout the network. Bayesian attack graphs have proven to be effective in capturing the propagation of attacks in complex interconnected networks. However, most existing security approaches fail to systematically account for the limitation of resources and uncertainty arising from the complexity of attacks and possible undetected compromises. To address these challenges, this paper proposes a partially observable Markov decision process (POMDP) model for network security under uncertainty. The POMDP model accounts for uncertainty in monitoring and defense processes, as well as the probabilistic attack propagation. This paper develops two security policies based on the optimal stationary defense policy for the underlying POMDP state process (i.e., a network with known compromises): the estimation‐based policy that performs the defense actions corresponding to the optimal minimum mean square error state estimation and the distribution‐based policy that utilizes the posterior distribution of network compromises to make defense decisions. Optimal monitoring policies are designed to specifically support each of the defense policies, allowing dynamic allocation of monitoring resources to capture network vulnerabilities/compromises. The performance of the proposed policies is examined in terms of robustness, accuracy, and uncertainty using various numerical experiments.more » « less
-
Abstract Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastructures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs (BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.more » « less
An official website of the United States government
